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We suggest applying the concept of wavelet transforms to the study of correlations in multiparticle
physics. Both the usual correlation functions as well as the wavelet transformed ones are calculated
for the p model, which is a simple but tractable random cascade model. For this model, the wavelet
transform decouples correlations between fluctuations defined on different scales. The advantageous
properties of factorial moments are also shared by properly defined factorial wavelet correlations.
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I. INTRODUCTION

The concepts of scaling and self-similar fluctuations
gain increasing importance in the study of many differ-
ent stochastic processes such as phase transitions, tur-
bulence, galaxy clustering, and multiparticle production.
The unifying feature of such diverse processes is an ap-
proximate power law behavior of the correlation func-
tions. Unfortunately, correlation functions higher than
second order are hard to measure directly; therefore
appropriate averaging and/or transformation techniques
have to be applied in order to extract information of in-
terest.

In the context of multiparticle physics useful tools such
as factorial moments, G moments, cumulants, correlation
integrals, void probabilities, and combinants [1-3] are
currently explored and to some extent already applied
to the analysis of data. These correlation measures elu-
cidate many interesting features of multiparticle correla-
tions and are used, for example, to detect a possible frac-
tal structure of QCD parton shower cascades [4]. Here
we explore a new approach, namely, wavelet transformed
correlation functions, or short, wavelet correlations.

The analysis of irregular textures by means of the
wavelet transform has by now gained widespread appli-
cation in many different fields, most notably in signal
processing, data compression, and pattern recognition
[5-8]. Its central property is the possibility to resolve
an arbitrary function simultaneously in terms of its stan-
dard variable (say time) and its conjugate counterpart in
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Fourier space (in this case frequency) in an efficient man-
ner. This is achieved by an expansion of the function with
respect to a self-similar set of (not necessarily) orthogo-
nal basis functions, so-called wavelets. These techniques
have not yet been applied to the analysis of irregular and
possibly fractal point processes arising in multiparticle
production at high energies.

For the present study the self-similarity aspect of the
wavelet basis is crucial. More specifically, the whole ba-
sis is constructed from dilations and translations (affine
transformations) of one single “mother” wavelet. Such
an affine basis may be understood as a “mathematical
microscope,” which is optimized to dissect structures on
finer and finer scales. In other words, the wavelet trans-
form separates “spikes” or “clusters” existing at very dif-
ferent scales in a signal.

Both the self-similarity aspect of the wavelet basis as
well as the above mentioned “scale separation property”
of the wavelet transform lead us to the suspicion that
the latter might be a very convenient tool for the repre-
sentation and analysis of cascade processes. The wavelet
correlations of selfsimilar processes, to be more precise,
the correlations between the coefficients of a wavelet ex-
pansion, will be “quasidiagonal,” i.e., an appropriately
chosen wavelet basis is a “natural” close approximation
to the true eigenfunctions.

Such a quasidiagonalization of the covariance ma-
trix has already been demonstrated for some self-similar
stochastic processes such as fractional Brownian motion
[9]. In the general case the true eigenfunctions are diffi-
cult (if not impossible) to find, so that one has to choose
between various types of wavelet bases in order to find
out which one will lead to an “optimal quasidiagonaliza-
tion” [7].

The goals for this paper are modest. For a demonstra-
tion of wavelet techniques with respect to self-similar cas-
cades we have chosen the one-dimensional p-model cas-
cade [10], which has been developed to describe the en-
ergy dissipation in fully developed turbulence. Together
with the closely related a model it has also been used as a
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simple discrete approximation to multiparticle processes
in high energy ete™ and hadron-hadron collisions [1,11].
Here the p model serves as a tractable toy model to study
wavelet correlations analytically. The p model is special
also in another way: the simplest of all wavelets, the Haar
wavelet, represents an exact set of eigenfunctions for the
covariance matrix.

After a brief introduction to the wavelet concept in
Sec. II, we first calculate the conventional correlation
densities of the p model in Sec. III and then turn to
the direct determination of the Haar-wavelet correlation
densities. Furthermore, a general approach is devel-
oped to study correlations with respect to any orthog-
onal wavelet basis. Section IV is devoted to the study of
the p model with Poissonian noise and to the application
of the wavelet transform on factorial moment and cumu-
lant densities, which are so crucial in the study of point
processes. The conclusions are presented in Sec. V.

II. SOME BASICS OF WAVELETS

We will summarize only some very basic concepts of
wavelets and the related idea of a multiresolution analy-
sis. For a more profound introduction we refer the reader
to some excellent reviews [5-8].

Given an arbitrary and, for simplicity, one-dimensional
function €(z) supported in the interval [0,1], we seek to
approximate it in terms of a histogram with 27 bins. A
histogram is a collection of individual bins represented
by the set of box functions

£6)(x)

e@(x)
E(x)

¢F(x) = ¢7 (272 — k)
1 fork277 <z < (k+1)277
~ ] 0 otherwise ,

(2.1)

which are all constructed from the unit box function
& (z) by a discrete dilation factor 27 and a translation
governed by an integer k. Within a given scale the box
functions ¢%, (x) are orthogonal with respect to the shift
index k.

The approximation of the function €(z) at the finest
scale J is then written as a histogram:

e(z) = e (z) = 3 el ¢H (x) ;

k

(2.2)

compare with the upper left histogram of Figs. 1 and 2(a).
If we were to approximate e(z) with the box functions
¢§{_1,k belonging to the rougher resolution scale J — 1,
which are again orthogonal with respect to the shift index
k, but are not orthogonal to the box functions ¢>§Ik of the
finer “resolution” scale J, evidently some detail is lost
compared to the approximation (2.2). This detail is the
difference between approximations (2.2) with resolution
scales J and J — 1. It can be fully expressed in terms of
the difference functions ¥, , (z) = ¥ (277 ¢ — k) with

1 for0<z<1/2
-1 for1/2<z <1
0 otherwise .

Yoo(x) = ¢ () = (2.3)

Again the functions ¢5{~1,k(w) are orthogonal with re-
spect to the shift index k within the given resolution

FIG. 1. Multiresolution de-
composition of a random func-
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FIG. 2. Numbering scheme of (a) the original amplitudes
(") and (b) of the Haar-wavelet transformed amplitudes e( ).
(c) shows the structure of the second-order correlation matrlx

of the wavelet amplitudes.

scale J — 1; they are also orthogonal to the box func-
tions ¢§I_1,k(m) at scale J — 1, but are not orthogonal to
the box functions ¢% (x) at scale J. On the other hand,
the ¢%, (z) are expressible in terms of the ¢§I_Lk(x) and

1/)‘I]i_lyk(w), together; we get, for example,

2(2) = S [68h(2) + v,
H(z) = okh(e) — vih(@)] -

This defines a multiresolution analysis of the function
e(z): At first e(z) is approximated with box functions
" (z) of scale J according to Eq. (2.2). Then according
to Eq. (2 4) the ¢%, () are expressed in terms of box func-

tions ¢, () a.nd the difference functions ¥5 , , ()
both of lower scale J — 1. Thereafter the ¢¥_, , () are

(2.4)

rewritten in terms of ¢¥_, , (¢) and 1/)_1,1_2’,0(3:) and so on.
Going from one scale j to the next lower scale j — 1,
only the difference between the two resolutions is mem-
orized and expressed in terms of the difference functions
1/;J 1,x(z). This procedure is depicted in Fig. 1. As a con-
sequence of this multiresolution analysis, the amplitudes

(J) of the box functions at the finest scale J are trans-

formed into the a.rnphtudes 7 ) of the difference functions
with scales i 1n the range 0 < ] < J — 1 together with the

amplitude ¢ ()

7=0:
eD(x) = Z

k

= () +

of the box function at the roughest scale

e ¢, (z)

J—1

3 (o)

7=0
J—127—

éo)¢oo ) + Z E ~(J)

7=0 k=0

(2.5)

confer again Fig. 1.
The “difference” amplitudes
&k = 2j/e(m)1/;ﬁc(:c)dz (2.6)
are most conveniently represented in a one-dimensional
histogram with 27 bins
€r-1,27-1-1), (2.7)

© - - - : oz
(60 » €00, €10, €11, €20, .,€23,€30,- ..

as depicted in Fig. 2(b).

In general the difference function v¥ji(x) is called a
wavelet and the approximation function ¢;x(z) the cor-
responding scaling function. More formally they are de-
fined via the dilation equations

B(x) =) cm d(2z —m) (2.8)

and

P(z) =) (—1)"e1_m (22 —m) ,

m

(2.9)

where the finite number of nonzero coefficients ¢, have to
satisfy various conditions stated by Daubechies [6]. Once
a finite set of admissible ¢,, is chosen, the solutions ¢ and
9 can be found by (numerical) iteration of Egs. (2.8) and
(2.9).

The scaling function ¢ (z) of Eq. (2.1) and the Haar
wavelet ¥ (z) of Eq. (2.3) represent the simplest ex-
ample; for them the only nonvanishing coefficients are
co = ¢; = 1. However, the Haar wavelet has a serious
drawback: It is discontinuous and, consequently, not very
well localized in Fourier space. Better localization prop-
erties in Fourier space are given, for example, with the
choices

00:%(14—\/3), Cc1 =

i3+ V3),
= 13-v3), a=id (2.10)

-V3),

leading to the smoother orthogonal Daubechies D4
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wavelet [6]. These wavelets and their corresponding scal-
ing functions are exemplified in Fig. 3. Note that the D4
wavelet is still compact, but three times as wide as the
Haar wavelet.

Both examples shown reflect a compact support. In the
literature many different wavelets with various additional
properties have been constructed and used. Generally
one has a trade-off between compactness and smoothness
of a wavelet: the smoother the wavelet becomes (and thus
the better it is localized in Fourier space), the broader the
compact support has to be.

As a generalization of the multiresolution analysis pre-
sented for the Haar wavelet before, Egs. (2.5), (2.8),
and (2.9) define a multiresolution analysis for any spe-
cific choice of wavelets. The resulting “histograms” at
the various scales then acquire the smoothness of the un-
derlying scaling function and wavelet.

III. p MODEL AND CORRELATION DENSITIES

We will briefly introduce the p model, which success-
fully describes the multifractal spectrum of the energy
dissipation in turbulent flow [10]. We determine its con-
ventional correlation densities as well as its Haar-wavelet
correlation densities analytically. Because of its more
complicated structure, we finally exhibit the results of a
computerized calculation for the Daubechies D4-wavelet
correlation densities.

A. p model

Without any loss of generality we consider the inter-
val [0,1] and normalize the “energy” E to unity in this
interval. We then split this interval into two equal parts
with energies E; = pE and E; = (1 — p)E, where E;
goes randomly, with equal probability, to the left or right
subinterval (bin). Let us pick the left subinterval and

say it goes with the energy E;; we then split this subin-
terval again into two parts with corresponding energies
E} = pE; and E} = (1 —p)E, where again E{ goes ran-
domly to the new left or right subinterval. For the right
subinterval we proceed in the same way. The whole pro-
cedure is repeated over and over again; see Fig. 4. For

Ip -model cascade |

el (x)

''poissonian noise''

p(x)

ny

FIG. 4. p-model cascade, where towards smaller scales the
length of the interval is divided into two halves and the flux
of energy is transferred in nonequal fractions p1 = (1 + a)/2
and p» = (1 — a)/2. At the last step a particle number is
tossed in each bin according to a Poisson distribution with
mean 'ﬁei"
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later convenience we set the “splitting” parameter equal
to
1 1
P=P1=§(1+a)a (1—1’):1’2:5(1—0‘) (3.1)
with 0 < a < 1. Clearly the total energy is conserved
in this cascade. The energy density contained in a cer-
tain subinterval is defined as the corresponding energy
divided by the length of the subinterval; let us denote
the energy density as ei’]), where the index J (J > 0)
represents the actual scale (equal to the number of cas-
cade steps) and the index k£ (0 < k < 27 — 1) represents
the kth subinterval belonging to the scale J. Also as the
scale parameter J increases, the number of possible con-
figurations increases with 2(2’-1) Within a given scale
each configuration g occurs with the same probability,

ie., pLJ) = 2_(2J_1).

B. Bin correlation densities

The one-bin correlation density is defined as the con-
figuration average () of the energy density in the bin k;
at some scale j:

o) = G0
i ZP(J) ,j&)— (€9)y

In an analogous manner, the two-, three-, etc. bin corre-
lation densities are given by

(3.2)

pijl)’kz (e(J) (J)) , (3.3)

(7) ) (G
pk]17k2yk3 <6k1 65; Gk];; > )

For convenience we consider the characteristic function
for the correlation densities:

271
Z(])[X(J)] — <exp i Z /\5‘;7)6561) >
k_

=1 +i2’\(]) (4) + 5 Z /\(J)/\(J)pkl .

k1 k1,k2

i 92020 )
+§ Z /\ )\ /\ pk17k2,k3+“. ’
k1 ,k2,k3

(3.4)

where we use an abbreviated notation XU) for the collec-
tion of parameters (Ag,...,A2i_1). Once the character-
istic function is known analytically, the correlation den-

sities between 2,3,..., ¢ bins (or the gth cumulant) can
J
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FIG. 5. Recursive construction of the characteristic func-
tion for the p model.

be obtained by partial derivatives of gth order of Z[X] (or
In Z[X]) with respect to /\Sf):

) _ l aqz(j)[)\(j)] (3.5)
Phy,....kq 19 3)\(]) 8A(]) ’
L ke |xG)=0

We introduce an iterative scheme for the characteristic
function, which allows us to calculate it at one scale re-
cursively from the next rougher scale. Figure 5 represents
a diagram of how the possible p-model configurations at
scale j+1 evolve from configurations at scale j. Let us
say that we know all the possible configurations for the
energy densities in the 27 bins at a given scale j. The
dyadic tree at scale j+1 is then composed of a left and
a right sub-tree, each at scale j. The branching to the
left might be weighted with the splitting factor (1 + «),
so that the branching to the right has to go with (1 — «)
or vice versa.

We use the explicit form of the characteristic function
(3.4) at scale j+1; in the spirit of Fig. 5 we split the 29+1
variables collected in A(U+1) = (X(LJ),/_\';J!)) into a left (L)
and a right (R) subset. It follows that

2]+1_1
z(G+1) ,\(J+1) Zp(1+1) exp Z )\(J+1) i](j)l) (3.6)
271 291
1 . .
= Spiew (¢ 0 o (1 3 e,
kr=0 £ kr=0
. 291 271
# S e (132 (-l e (3 0o
no k=0 kr=0
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If the branching of the dyadic tree at scale j+1 to the left goes with (1 + a) and to the right with (1 — «), the

configurations u* at scale j+1 are defined; for the u~ configurations it is the other way round. Observe that the
configuration probability at scale j+1

; i 1 j 2 1 o 2

s =@ L () 1 () o)
2 2

factorizes into the product of the configuration probabilities at scale j. This allows us to write the sum . over all

scale j+1 configurations as a double sum }, - = over all scale j left and right configurations. We then obtain the
recursion relation for the characteristic function of the p model:

ZEDEE] = L20[1+ @)X 20[1 - @)FP] + 29[(1 - )3P) 29[+ 3P} (3.8)

with ZO[A®)] = exp(sA(©).
This iterative solution for the characteristic function can now be used to derive recursion relatlons for the correlation
densities (3.5). First, as an explicit demonstration of this, the two-bin correlation density pk kl) is considered for the

special case that both /\SCJI_H) and /\5324-1) belong to /\(If), i.e., to the left branch of the dyadic tree depicted in Fig. 5;
we get

2Z0XY)

Dy )

G+ _ 1 [82ZDY] 2 ,(5) T)
— | ——— 1+ ) ZY[(1 - a)y’] + - c
( ( ) [( ] 6)\2]1)8)\552)

= _ N\2705) 3
ki ,k2 22 8A§cj)a)\§cj) 1-0)*ZY[(1+ o)A ])
1 2

XG+1) =0

= (1+a )pk‘71),c2 ,

where Z(j)[x(j)“x:o =1 and Eq. (3.5) have been used. In general we find, for the correlation densities,

P =1, (3.9)
( 1+ a2, if ky, ky € {L}
j+1 i
Pk]hkz) =4 (14 az)p(J) 29 ky_2i 1L K1, k2 € {R} (3.10)
(1-a?) ifk; € {L}and k; € {R} or vice versa,

G+ _ { 1+ 3az)p§c’1)k2 ke ifku ko ks € {L},..., (3.11)

Peakaka =1 (1= a2)p) ifky, ks € {L}andks € {R}, ...

{L} and {R} stand for all the bins belonging to the left and the right branch of the dyadic tree depicted in Fig. 5.
For the right branch the indices have to be shifted as indicated above for the two-bin correlation density only.

The one-bin density is equal to one as it should be, because energy is conserved in the p model, so that the average
energy density on every scale j is equal to the initial density. The two-bin correlation density is depicted in Fig. 6;
it shows clearly the multiplicative structure (3.10) as the scale becomes finer. The closer the bins are together, the
stronger they are correlated; a scaling law with decreasing bin-bin distance shows up as a result of the self-similarity
of the p-model cascade.

It is straightforward to rewrite the recursion relations (3.9)—(3.11) of the correlation densities in terms of cumulant
densities, the latter having the advantage that they subtract contributions from lower-order correlations. We find

C,(ch) _ szl) 1, (3.12)
CU+D _ 41 _ (G+1) (G+1)
ki1,k2 ki,k2 k1 k2
(1+a 2)CP,, +a? ifky ke € {L},. (3.13)
—a? ifk; € {L}and kz € {R} or vice versa,
(4+1 +1) (3+1) (3+1) _ (G+1) (G+1 +1 +1 +1) (§+1) (G+1
Cki,kz),ks = Pi]l,kz,ks = Py ks Pia Elka Ko = iﬂ]z ka) (Jl '+2 (]1 )sz )Pgs )

j ) () @ )
_ { (1+30%)C, &, +202(Cilk, + Ok + Chpny) i kaskas ks € {L},... (3.14)

—2022C7, if ki,ky € {L}andks € {R}, e
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FIG. 6. Two-bin correlation density pg,x, after J = 7
p-model cascade steps (a = 0.4).

Evidently, the cumulant densities show a recursive struc-
ture that is analogous to the correlation densities (3.9)—
(3.11).

C. Haar-wavelet correlation densities

So far we have determined the correlation (and cumu-
lant) densities between the various bins at the last step of
the p-model cascade. If we would first average over sev-
eral adjacent bins and then study the correlations of the
local averages, we could extract information about earlier
stages of the cascade; referring to the left column in Fig.
1, this would correspond to the analysis of correlations
among the amplitudes within each averaged histogram
€U (x) separately. Obviously this procedure yields highly
redundant information since the correlations at a given
scale also include the correlations at all rougher scales.

As an alternative we suggest studying correlations be-
tween differences of bin amplitudes at adjacent scales; in
other words, we look at correlations among the difference
amplitudes of the right column histograms ) (x) of Fig.
1. Since each such histogram reflects the difference of
fluctuations at two adjacent scales only and thus is in-
dependent of the fluctuations at earlier stages (scales) of
the cascade, this approach contains no redundancy at all.
At this point the wavelets enter the picture.

For an elementary outline we consider the Haar wavelet
first. In this case the wavelet decomposition (2.5) gives
us the amplitude

(3.15)

representing the mean energy density, and the Haar-
wavelet amplitudes
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1 2711 27 -1
€00 = 57 E €r — E €k |»
k=0 k=2J-1
2]—2_1 2]—1___1
- 1
€10 = 971 E € — 2 €k | >
k=0 k=27-2
1 3.27721 271
€11 = F E €r — E €k |,
k=27-1 k=3.27-2
27731 2772
- 1
€20 = -27_—2— E € — E €L , (316)
k=0 k=2J-3
- 1
€j-1,0 = 5 ( 0 —61) s
- 1
€Jj-1,1 = 3 (62 - 63) s )
- 1
€j—1,27-1_1 = 2 (621—2 - E21—1) ,

representing the difference between partial mean energy
densities, where “partial” depends on the position within
the dyadic cascade. We want to stress one more time
that, according to Eq. (2.5), both the energy density his-
togram at scale J as well as the Haar-wavelet amplitudes
completely represent the specific configuration p at scale
J. Note also that we have suppressed the configuration
index p for the wavelet amplitudes in Egs. (3.15) and
(3.16).

Analogously to Egs. (3.2) and (3.3), the correla-
tions between the various Haar-wavelet coefficients of
Egs. (3.15) and (3.16) are defined by

p~(j1’i¢1) = (Ej1k1> )

/3(j1k1),(j2k2) = <€j1k1€j2k2> ) (317)

Plirkr),(Gaka),(isks) = (Ejikes €jakes €jska) -

In order to extract the Haar-wavelet correlations of the p
model analytically, we express the bin energy densities ¢y,
entering the exponent of the characteristic function (3.4),
in terms of the wavelet amplitudes €;;; as a consequence,
we introduce variation parameters 7;x, so that

271 J—127-1
Z Ac€r = Z Z Nik€jk + r;oe( ) (3.18)
k=0 F=0 k=0

Apart from factors 277, these 7;, can be understood as
the wavelet transform of the Ag:
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271
Mo = Z Ak,
2’ 1 271
Moo = Z = D X,
k= 2] 1
2’ 21 27
Mo = Z Ak — Z Ak,
k= 2.’ 2
3-2’ 2—1 271
M1 = Z Ak — Z Ak,
k=271 k=3x27-2
: (3.19)
NI—1,0 = Ao — A1,
MI—1,1 = A2 — A3, .., Ny_127-121 = Ags_2 — Agu_1;

compare with Egs. (3.15) and (3.16).
Furthermore, we introduce a left-right branch splitting
of the 77 variables

Gt = Z AGTD | 2’% AGTD (()Ji + 77(()?;3,
k=27
(J+1) _ n(]) 77(()]1)2, (3.20)
(G+1) _ TIJ(I)_l,k:;L fork! = .,21"“1 —-1
™ { nﬁ)—l,k’—zi’—l;R fork/ =2/'"1 ... 27" —1,

which follow from Egs. (3.19) and the scale-evolution di-
agram of Fig. 5. Because of Eq. (3.18), the recursion re-
lation of the characteristic function (3.4) for the wavelet
correlations of the p model,

ZG+H) [5G+ {Z(J) 1+a) LJ')]Z(J')[( — )i J)]
20— P+ a)ig 1}
(3.21)

is identical to Eq. (3.8).

The wavelet correlation densities are now given as par-
tial derivatives of this characteristic function with respect
to the 7 variables [compare with Eq. (3.5)]. With the
transformation 83.20) we can express the derivatives with
respect to nV*1) in terms of derivatives with respect to

ng) and 7)(]).

1o} 1 9 " 1 9
ong D 2on{), " 2anl)

o 1 48 1 38

G0~ 2500 2500 (3.22)
40 BWO;L a"70;R

8 r j'—1 _

P ~ ————3"5{)_1,;;' . for k& 0,...,2 1

15] (',1:;1) - 877(.'“ el fork' = 2_7"—1’ .. .,Zjl —-1.

i'—1,k!—2i'=1;R

Equations (3.20)—(3.22) allow us to find the recursion re-
lations for the Haar-wavelet correlation densities. In the
following we will not state the various recursion relations,
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but only the results which follow from them.
For the first-order Haar-wavelet correlation density we
obtain

/30 =1 b
(3.23)
Pk =0 for 0<j; <J—1, 0<k; <20 —1.
That outcome is easy to understand since all bins in the
p-model cascade have an average energy density equal to
one and the average fluctuation between energy densities
is equal to zero.
The results for the second-order Haar-wavelet correla-
tion density are more striking:

poo =1,
(3.24)
Plirkr),Gakr) = @7 (1 +a®)"

with0<j; <J—-1;0<k<2 -1

ﬁ(jlkl)y(j2k2) =0, for (jl,kl) # (j27k2) 5

see Fig. 7 and consult Fig. 2(c) for the arrangement of
the wavelet amplitudes within a 27 x 27 matrix. This
correlation density matrix is diagonal. In other words,
the Haar-wavelet basis represents the adequate normal
coordinates for the p model. All off-diagonal contribu-
tions vanish simply because the average of the product
of two differences belonging to different scales is zero;
as a consequence there are no second-order correlations
between different scales of the p-model cascade. As the
resolution j; increases, the diagonal contributions reflect
a power law (scaling law), which is clear evidence of the
self-similarity of the p-model cascade. Compared to the
two-bin correlation density (3.10), the Haar-wavelet cor-

~ 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

doheliedsdbneddoo i

120
100
80

. 60
Gaky)

60
40 Gikp)

FIG. 7. Haar-wavelet transformed two-bin correlation den-
SItY P(jyky),(j2kz) fOr the p-model cascade.
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relation density has a much simpler and clearer structure;
compare Fig. 6 with Fig. 7.

Similar to the Haar-wavelet correlation density of sec-
ond order, the one of third order also takes a simpler
and sparser structure than the conventional correlation
density (3.11). We will not exhibit any results here, but
rather consider the corresponding Haar-wavelet cumu-
lants.

Analogously to Egs. (3.12)-(3.14), the Haar-wavelet
cumulants subtract redundant lower-order correlations
and read

C(:ilkl) = Pjik) »
(3.25)

Clrkr),(Gaka) = P(irk),(Gakz) — Plirkr)Plizka) »

C(j1k1)7(j2k2)y(j3k3)

= P(jikr),(zka),(Gaks) — P(irk1),(Gaka)P(isks)
=P(i1k1),(Gsks)Plizks) — Plizka),(Gaks)P(irks)
+2D(j1 k1) P(i2ks) Plisks) -

The only difference between the second-order cumulant
(3.25) and the second-order correlation density (3.24) is
that

Coo =0

otherwise they are identical because of Eq. (3.23). This
result also generalizes to the third-order Haar-wavelet
cumulant in that all contributions involving the rough-
est scaling function now vanish. The only remaining
and nonvanishing contributions to the third-order Haar-
wavelet cumulant are given by

é(]‘zkz),(jzkz)‘(jlkl) = (1 + 302)1'1 [:tza4(1 + a2)j2-j1~1] ’
(3.26)

with 0 < j; < jo < J —1 and (k; + 1)272792 <
ky < k29273t 4 2027311 _ 1 for the plus sign and
ky292731 4 2d2—hi—1 < kg, < (ky + 1)272791 — 1 for the
minus sign. Ilustratively, the restrictions on the indices
indicate that the third-order Haar-wavelet cumulant is
only nonvanishing if the indices (j1, k1) and (jz2, k2) have
the same “parenthood,” where the plus (minus) sign has
to be chosen if (j2,k2) belongs to the left (right) branch
of the cascading tree starting in (j1,k1). We have a dou-
ble power law, which depends on the rougher scale j; and
the difference j; — j; of the two involved scales; this is
exemplified in Fig. 8.

D. General wavelet correlation densities

Evidently, the Haar-wavelet basis represents the true
normal coordinates for the p-model density cascade,
since it diagonalizes the corresponding covariance ma-
trix (equal to the second-order correlation density ma-
trix) completely. For more general wavelets this result

(jo=0,k=0) I
NE
(1,0) e
v ..
/ g.-..
g N
Ve
. N Y
W(leo) A
Ve
g (Jr+1,1) _
N iy
N )
7/ N 'E
s =
\J
(2, k)

FIG. 8. Double scaling of the third-order Haar wavelet cu-
mulant C(j,k,),(jzk2),(G1 k1) for the p-model cascade.

will not hold exactly. However, we could hope that they
might lead to a quasidiagonalization of the covariance
matrix; this means that the off-diagonal contributions
are strongly suppressed compared to the diagonal contri-
butions.

It should be clear from the very beginning that the
direct determination of the Haar-wavelet correlations for
the p model, as presented in the preceding subsection,
will no longer be feasible for more complicated wavelets.
Therefore we develop a formalism that will allow us to
determine the wavelet correlation densities directly from
the bin correlation densities.

We start with a suitable generalization of Egs. (2.5):

271
e(z) — e (z) = Z exdgr(z)
k=0
J—127-1

6(()0)%0(%) + Z Z Eirtjr(z) ,

j=0 k=0

Il

(3.27)

where the Haar scaling function ¢?k (z) has been replaced
by an arbitrary orthogonal scaling function ¢ s (z). This
leads to a modified multiresolution analysis. The result-
ing “histograms” at the various scales are now not dis-
continuous step functions as in Fig. 1, but acquire the
smoothness and other properties of the underlying scal-
ing function and wavelet. For this more general multires-
olution analysis it is necessary to impose a periodic con-
tinuation of €(x) outside its support, which is a common
practice to reduce unwanted edge effects.

Equation (3.27) can be viewed as a linear transforma-
tion of the amplitudes €, written compactly as
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-

€= (€0, €1,€2y..., (3.28)

621—1) ’

to the wavelet amplitudes €;;

= 0 - - - = ~ - -
€= (60 » €005 €10, €11, €20, - - - , €23, €30, - - - 7€J—1,21*1—1)
=: (60 ,€1 ,€2 ,€3 ,€4 ,...,€7 ,€8 a"'a€21—1) )
(3.29)
so that
é = We. (3.30)

Note that the transformation matrix W depends only on
the coefficients c,, of Egs. (2.8) and (2.9). More details
about its structure are given in the Appendix. For the
characteristic function (3.4) we derive

703 = (exp (%-2)) = (exo (iAW 2 we)
= (o {s[(W)" 3] -7}) = (ex0 (57-9))

= Z[q] . (3.31)
The new set of variation parameters
= (70,100, M0, M1s -+ -y NI—1,27-1-1) (3.32)
are the wavelet transformed X:
i=(W1)TX. (3.33)

The wavelet correlation densities are obtained by ap-
propriate derivatives of the characteristic function with
respect to the 7 variables. For example, the first-order
wavelet correlation density reads

- 1 0Z[7]
Pk, = — p)
1 ey 7=0
_ Z 8/\k21 OZ[A ]
o Bnkli ‘9/\192 S—
271 271
= Wkt = > (W)kykpk, - (3.34)
k2=0 k=0

For the second- and third-order wavelet correlation den-
sities we obtain analogously

Praks = D (W)kiky (W)kyka Pksks

k2,kq4
(3.35)
Praksks = D (W)aks (W) kghy (W) iy ko Pz ks -
k2,k4,ke

This approach is model independent and applicable for
any compact wavelet. The only prerequisite is that the
bin correlation densities are known, as is the case for the
p model studied here [Egs. (3.9)—(3.11)].

Figure 9 shows the result for the second-order D4-
wavelet correlation density prsk, = P(jiky),(joks). Lhe
dominating contributions are on the diagonal and also
indicate a scaling, which, besides fluctuations, is approx-
imately equal to the scaling occurring in the Haar-wavelet

[

|||[I|||||

l |
| 1 '||
wl e IlII!“ ||||||||||||||||||||||

FIG. 9. D4-wavelet transformed two-bin correlation den-
Sity P(jyk1),(jzk2) for the p-model cascade.

case of Fig. 7. Off-diagonal contributions arise in bands,
which reflect correlations between different scales belong-
ing to the same evolution branch of the p-model cascade
tree. Although, as expected, the D4-wavelet basis does
not lead to a complete diagonalization of the covariance
matrix, it gives rise to a quasidiagonalization since off-
diagonal contributions are strongly suppressed with re-
spect to the diagonal contributions. This quasidiagonal-
ization of the covariance matrix for self-similar stochastic
processes seems to be a general feature of the wavelet ba-
sis.

In the case that the bin correlation densities are not
known analytically, such as for experimental data or
more complicated models, the wavelet correlation densi-
ties have to be sampled from N independent events (con-
figurations). The multiresolution decomposition (3.30) is
then applied to each event and the wavelet correlation
densities are obtained by

1 N
= N Z ~j1k1’
p=1

N
= N E 631k1€]2k27--- .

ﬁ(jlkl)

Plirkr) (2 k) (3.36)

IV. WAVELET CORRELATIONS OF POINT
DISTRIBUTIONS AND POISSONIAN NOISE

So far we have discussed ordinary moments and their
wavelet transforms for continuous positive random vari-
ables (eg,...,€3s7_1). In this section we extend our con-
siderations to discrete random variables (ng,...,n3s7_1)
with np, = 0,1,2,..., factorial moment densities and
their respective wavelet transforms.

For discrete counting problems the appropriate statis-
tical framework is that of point distributions. Given an
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event with NV particles at positions (&, ..
fine the point density (see, e.g., [12])

&), we de-

N

plz) =D bz —2i),

=1

(4.1)

which can be regarded as a histogram with infinite res-
olution. Factorial moment densities of gth order are ob-
tained by event averaged products of p(z)

p[q](:cl, oy q)

= <ﬁ[q](w1, . ,:vq))

:< > 5(m1—§:,~1)---5(mq—§:iq)>, (4.2)

i

with the restriction that the same particle may not be
counted more than once. Note that the corresponding
ordinary moment densities p; are obtained by allowing
for multiple counts of the same particle, i.e., replacing
the restricted sum by the free one 3; . in Eq. (4.2).

We define factorial wavelet correlations by the mul-
tiresolution expansion of the gth factorial moment den-
sity; for simplicity, we exhibit only second-order densi-
ties:

pi2) (@1, 2) = Y D piay(das ki g2, ka)

J1,J2 k1,k2

X1 ky (T1) Yok (T2) (4.3)

where the summation ), . also includes the terms in-

volving the scaling function ¢go at the roughest scale.
The wavelet transformed factorial densities are defined

by

P21 (d1, k1; Ja, k2)
= 9i1tJz </ﬁ[2}($17$2)"/’j1k1 (1) Yjyk, (z2) d$1d$z>

(4.4)

= 2j1+j2 < Z d)jlkl (-'iu ) 1/).7'2"32 (il2)> ’

i1 Fi2

using the d—function representation (4.2). Equation (4.4)
and its trivial extension to higher orders provide an easily
computable sampling prescription for factorial wavelet
correlations of point distributions. All one needs to know
is the functional form of ¥ (z).

In particle physics and particularly in intermittency
studies, factorial moments are favored over ordinary ones
based on the argument that the former unfold “statisti-
cal” fluctuations from “dynamical” ones. This picture,
promoted in the original work of Bialas and Peschanski
[1], is based on the Poisson transform. More specifically,
in a Poisson transformed histogram at resolution J each
continuous random density € is replaced by a discrete

random number nj of particles, where each n; is tossed,
independently from any other bin, according to a Poisso-
nian

(ﬁek)““

- (4.5)

Dn, (€x) = exp(—Tnieg)

The average number of particles per bin 71 = 3, (ng)/2”
is a free parameter. In a subsequent step the n; particles
are uniformly distributed over the kth bin; see Fig. 4.

Bialas and Peschanski refer to correlations at the level
of the €, as “dynamical fluctuations” and those at the
level of the Poisson transformed n; as “dynamical fluc-
tuations with statistical (or Poissonian) noise.” Adopt-
ing this terminology, the mentioned unfolding property
means that the ordinary moments of the ¢; are propor-
tional to the factorial moments of the ng [1]:

p?z?ise(kli kZ) = <nk1nk2> - 6k1k2 (77.)“)

_2 dyn

=n’ <6k1 6kz> =T Pl kg - (46)

Taking the wavelet transforms of both sides we con-
clude that a similar relation holds for wavelet correla-
tions:

~noise

p[z]l (j1,k1;j2,k2) = ﬁzﬁ?jir;cl):(jzkz) : (4'7)
Of course, this argument is extendable to all higher or-
ders. Hence the unfolding property of standard facto-
rial moments also pertains to suitably defined factorial
wavelet moments (4.4).

At this point we mention that appropriate wavelet fac-
torial cumulants can be defined by a straightforward
extension of (4.4) to linear combinations of products of
densities ppg. Note, however, that the direct sampling
of both the standard and wavelet transformed cumulants
requires the use of event-mixing techniques [3].

V. CONCLUSIONS AND OUTLOOK

The main goal of this study is to explore the wavelet
transform applied to correlation studies. Orthogonal
wavelets define a multiresolution representation of a (ran-
dom) signal, which dissects the latter into contribu-
tions from different scales. We expect that data arising
from hierarchically organized random processes exhibit a
uniquely simple correlation structure once they are rep-
resented in an appropriate wavelet basis.

These expectations are supported by studies of frac-
tional Brownian motion [9] as well as by the present anal-
ysis of a simple cascade model. In both scenarios the
correlations between contributions from different scales
nearly decouple, or in other words, the covariance ma-
trix of the wavelet transformed signal takes a quasidi-
agonal form. In the case of the self-similar p model we
have shown that the simple Haar-wavelet diagonalizes the
covariance matrix even ezactly and, moreover, the diag-
onal contributions belonging to different scales exhibit a
scaling law. For the third-order Haar-wavelet cumulants
we have found a double scaling in the sense that con-
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tributions with a common parenthood depend on their correlation studies at the hadron level with theoretical
absolute as well as their relative scale with respect to the calculations of parton shower models. We further believe
common ancestor. More general wavelets, such as, for ex- that wavelet correlations serve as a useful tool to study
ample, the Daubechies D4 wavelets, are not ideal normal the self-similarity aspect of QCD parton cascades, which
coordinates for the p model and lead only to a quasidi- occur in ete™ and hadron-hadron collisions. Of course,
agonalization of the covariance matrix. The power-law these hopes and expectations remain to be verified by
scaling along the diagonal is still recovered, but now mi- further analyses.
nor off-diagonal contributions arise in band structures, Also outside multiparticle physics wavelet correlations
which reflect small correlations between D4 fluctuations might prove to be useful. Recently we became aware of
at different scales. more elaborate studies about intermittency in fully de-
Besides the study of correlations in continuous ran- veloped turbulence [13]. There is evidence that turbu-
dom functions it is also important to discuss correlations lent cascades show some interscale correlations. In this
of point distributions. The latter are usually studied in respect, wavelet correlations offer an ideal tool to gain
terms of factorial moments or product densities. We de- further insight into these phenomena.

fined appropriate factorial wavelet correlation functions
which share all the nice properties of standard factori-
als. We recalled that the normalized factorials for the p
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APPENDIX: THE WAVELET TRANSFORMATION MATRIX W

We restrict this consideration to the compact and orthogonal Daubechies D4 wavelet only; the generalization to
other wavelets is straightforward.
According to the general multiresolution analysis defined by dilation equations (2.8) and (2.9) we can write

bJ-1,0 cg ¢ ¢c2 ¢cg 0 O --- 0 O O O b0
br-11 0 0 ¢c ¢ ¢c2 ¢c3 -+ 0 0 0 O bi1
¢J_1,2J—1_2 0 0 0 0 Co Ci C2 C3 ¢J,2171_2
¢yj-12/-1-1 | _ | c2 ez 0 0 0 0 ¢ a br27-1-1 (A1)
Yi_1,0 c1t —co 0 O 0 0 c3 —c D271 ’
Yr-11 €3 —C2 C1 —Co 0 0 0 o by27-141
Yy_1,27-1_2 0 0 0 O c3 —c2 1 —cg 0 0 1272
Yro1,29-11 0 0 0 0 --- 0 0 e —c2 1 —co G271
ATJ)

where A(Y) is a 27 x 27 orthogonal matrix. In the next step the scaling functions ¢;_; » are rewritten in terms of the
scaling functions ¢s_5 j and the wavelets 1;_3 1, whereas the wavelets ¢ y_1 ) are kept; this procedure is repeated
over and over again until the scale j = 1 is reached. With the abbreviation

-

P = (10, P11, Y10, Y11, Y20, - - -, Y23, Y30, - -, Yy_1,27-1-1) ,
B = (470, D1, D12, B3y Bray - -y DI, Pss -1 D127 1) (A2)
we get, for the overall transformation matrix,
¥ =A@ . AG . LAU-D . ADG
= (WT)™'g, (A3)

where the 27 x 27 matrix
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AW — <

A@ o
0

Y) (A4)

is constructed from the 27 x 2/ matrix A, which has a structure analogous to that of A(/),
Equation (A3) defines the wavelet transformation matrix W introduced in Eq. (3.30). The wavelet expansion (3.27)

can then be written as

-

& F= (W8 (WIP) =W )T - WTG = 2.4 . (A5)

Note that the matrix (W~1)7T differs from W by normalization factors 277 in appropriate places.
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